New Successive Approximation Methods for Solving Strongly Nonlinear Jaulent-Miodek Equations
Main Article Content
Abstract
In this paper, we propose two new techniques for solving system of nonlinear partial differential equations numerically, which we first combine Laplace transformation method into a successive approximation method. Second, we combine Padé [2,2] technique into the first proposed technique. To test the efficiency of our techniques, Jaulent-Miodek system was used, which contains partial differential equations and has strongly nonlinear terms. Experimental results revealed that the first proposed technique gives better results when the interval of t is small in terms of error approximation in tabular and graphical manners. Moreover, the results also demonstrated that the second proposed technique gives better results regardless of the given interval of t in terms of the least square errors.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License [CC BY-NC-SA 4.0] that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work, with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online.